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ABSTRACT

This paper contributes to the classification problems of finite dimensional
Hopf algebras H over an algebraically closed field k of characteristic zero.
It is shown that for a non-semisimple Hopf algebra H of dimension 18
either H or H* is pointed.

0. Introduction.

The classification of finite dimensional Hopf algebras has been developed rapidly
since the end of 90’s. D. Stefan classified Hopf algebras in dimensions less than
12 [11]. It is shown by S.-H. Ng that a Hopf algebra of dimension p? is iso-
morphic to a group algebra, the dual of a group algebra or a Taft algebra [8].
For the pg dimensional Hopf algebras H where p,q are distinct primes, clas-
sification is still open in general. However many results have been obtained.
N. Andruskiewitsch and S. Natale proved that 15,21 or 35-dimensional H are
semisimple [1]. Furthermore M. Beattie and S. Dascélescu settled the dimen-
sions 14,55,65,77,91 and 143 in [2]. Other recent results of pg-dimensional cases
are as follows. If primes p,q are twine primes p, p + 2 [9] or p = 2 [10] then
H is semisimple by Ng. P. Etingof and S. Gelaki proved [3] that if ¢ < 2p + 1,
then H is semisimple. For the case ¢ > 2p+ 1, using some generalization of the
method in [1] and [2], it is shown in [4] that there is no non-semisimple Hopf
algebras of dimension 33,39,57,85,95,115,119,133,145,161,203,319 or 377.
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On the other hand, other than the cases of prime and pg dimensions, the
classification is settled only in dimensions 8 [11] and 12 [7]. Most recently,
G. A. Garcia discussed in dimensions p?, and classified quasi-triangular Hopf
algebras of dimension 27 [5].

In this paper, we apply the method in [4] to Hopf algebras of dimension 18.
We show the following

THEOREM 0.1: If H is a non-semisimple Hopf algebra of dimension 18 over an
algebraically closed field of characteristic zero, then either H or H* is pointed.

1. Preliminaries

Throughout this paper, H is a finite dimensional Hopf algebra over an alge-
braically closed field k of characteristic zero, and A, €, S denote the comulti-
plication, the counit, the antipode, respectively.

The n-th term of the coradical filtration of H is H, = /\n+1 Hy, where
Hy = @, C; is the coradical of H. As k is algebraically closed, there exists
a coalgebra projection m : H — Hy and H = Hy @ I, where ker m = I(see
[6, 5.4.2]). Setting p; = (7 ® id)A and p, = (id®7)A, H is a Hy-bicomodule
with the structure maps p; and p,. Hy, H,, I are Hy-subbicomodules of H.
Any Hjy-bicomodule is a direct sum of simple Hy-subbicomodules and a sim-
ple Hy-bicomodule has coefficient coalgebras (C; , C;) and its dimension is
/(dim C;) (dim Cj).

Let P,,n =1,2,... be defined inductively by:

Py ={z € H;A(z) — pi(x) — pr(x) = 0},

P, = {Jc € H;A(z) — pi(x) — pr(x) € Z P ® Pn_i}, n> 2.
1<i<n—1
Then P, = H,, NI and P, are Hy-subbicomodules of I, due to Nichols (see [1,
Lemma 1.1]). We denote by P the isotypic component of simple subbi-
comodule of P, with coalgebra of coefficients (C; , C;). We say the subspace
Pnci"cj is non-degenerate if Pnc i Z P,_1.

The following result is from [2].

PROPOSITION 1.1: If there is no non-trivial skew primitives then there exists a
simple subcoalgebra C' (dim C' > 4) of H such that P, 0.
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The next Lemmas were obtained in [4]. Lemma 1.2 is a generalization of [1,
Corollary 1.3].

LEMMA 1.2: dim PSP = dim P9C:90 = dim P9 P9 = dim Py P59 for
g€ G(H).

LEMMA 1.3: Suppose there exist simple subcoalgebras C' and D such that Pg’ b
is non-degenerate. Assume further diim C' # dim D or dim PS> P — dim Pg’_j? #
dim C'. Then there exists a simple subcoalgebra E such that PlC’E is non-

degenerate for some l > m + 1.

2. Proof of Theorem 0.1.

Throughout this section, H be a non-semisimple and non-pointed Hopf algebra
of dimension 18 over k. First we show the following

LEMMA 2.1: Let H be a Hopf algebra as above and |G(H)| > 1. Then H
contains a Taft Hopf algebra T'(3) of dimension 9 and |G(H)| = 3.

Proof. First we suppose that H has no non-trivial skew primitive element.
Hence, by Proposition 1.1, there exists a simple subcoalgebra C' with dim C' > 4
such that Pll’ © # 0. Thus Pls(c)’ ! # 0 by Lemma 1.2. It follows from Lemma
1.3 that there exist a grouplike element h and simple subcoalgebra E with
dimE = dimC such that Pé’h and P,fl(c)’E are non-degenerate for some
integers m,n > 2. By Lemma 1.2, dimPlg’gC = dimPlgS(C)’g = dimPll’C
for all g € G(H). Note that {P#9¢ : g € G(H)} U{P* 9. g e G(H)} is a
set of linearly independent subspaces of H. Therefore,

18 = dim H > dim <Ho +PSOE L N ppo© g ppS@9 4 po gh)
9eG(H)

(|G(H)| + dim C) + 2|G(H)| dim P} ©

> 2
> 2(|G(H)| +dim C + |G(H)|VdimC).

This implies that (|G(H)|,dim C) = (1,4) which contradicts the assumption
|G(H)| > 1. Therefore, H has a non-trivial (1, g)-primitive element x for some
g € G(H). Let L be the Hopf algebra generated by z,g. Then L is non-
semisimple and pointed and so L is not isomorphic to H. By [1, Proposition 1.8],
dim L has a square factor. Therefore, dim L = 9 and so L = T'(3) by [11] or [9].
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By the result above, |G(H)| = 3k for some integer k. Since H is non-pointed,
a simple subcoalgebra C' with dimC > 4 is contained in Hy. By counting
dimensions, dim C' = 4 or 9. If dim C' = 4 then 3k|dim Hy » where Hy o is the
sum of all 4-dimensional simple subcoalgebras of H [1, Lemma 2.1(i)]. And so
dim Hy > |G(H)|+dim Hy 2 > 15. This contradicts T'(3) C H. Thus dimC =9
hence H =2 T(3)® C. |

Remainder of the proof of Theorem 0.1. We assume further H* is non-pointed.
By [10, Corollary 2.2], G(H) or G(H™) is not trivial. By duality, we may
assume that |G(H*)| > 1. By Lemma 2.1, T(3) C H* and so there exists a
Hopf algebra projection I : H — T'(3)* ~ T'(3). Let H™ be the coinvariant
{r € H: (id®I)A(xr) = x @ II(1)}. Then H is a left coideal subalgebra of
H, dim Hel = 2,

If dim Soc(He) = 2 then H is a subHopf algebra of H and H! ~ kCs.
This contradicts Lemma 2.1 which implies that |G(H)| = 3. Thus Soc(H<') =
k1. The HU is expressed as k1 @ kx where x € (H™)T. Since H®! is a
left coideal, A(z) can be expressed as « ® 1 + 5 ® x. In this case, the o above
is equal to x and the 8 above is a non-trivial grouplike element by calculating
A®)(z) with the coassociativity of A. So z is a skew primitive element. By
Lemma 2.1, the order of 3 is 3.

If z is a non-trivial skew primitive element, then Hopf algebra L generated by
{z, B} is non-semisimple and pointed. Thus dim L has a square factor and is a
proper factor of 18. This implies that dim L = 9 and hence L 2 T'(3). Therefore,
1,z,2z? are linearly independent which contradicts that dim He! = 2.

If x is a trivial skew primitive element, i.e. z = k(1— () for some k € k*, then
the algebra generated by {1,x} is the group algebra k[3] which is of dimension
3. This also contradicts that dim H' = 2.

This completes the proof of Theorem 0.1. |
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