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ABSTRACT

This paper contributes to the classification problems of finite dimensional

Hopf algebras H over an algebraically closed field k of characteristic zero.

It is shown that for a non-semisimple Hopf algebra H of dimension 18

either H or H∗ is pointed.

0. Introduction.

The classification of finite dimensional Hopf algebras has been developed rapidly

since the end of 90’s. D. Ştefan classified Hopf algebras in dimensions less than

12 [11]. It is shown by S.-H. Ng that a Hopf algebra of dimension p2 is iso-

morphic to a group algebra, the dual of a group algebra or a Taft algebra [8].

For the pq dimensional Hopf algebras H where p, q are distinct primes, clas-

sification is still open in general. However many results have been obtained.

N. Andruskiewitsch and S. Natale proved that 15, 21 or 35-dimensional H are

semisimple [1]. Furthermore M. Beattie and S. Dăscălescu settled the dimen-

sions 14,55,65,77,91 and 143 in [2]. Other recent results of pq-dimensional cases

are as follows. If primes p, q are twine primes p, p + 2 [9] or p = 2 [10] then

H is semisimple by Ng. P. Etingof and S. Gelaki proved [3] that if q ≤ 2p + 1,

then H is semisimple. For the case q ≥ 2p +1, using some generalization of the

method in [1] and [2], it is shown in [4] that there is no non-semisimple Hopf

algebras of dimension 33,39,57,85,95,115,119,133,145,161,203,319 or 377.
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On the other hand, other than the cases of prime and pq dimensions, the

classification is settled only in dimensions 8 [11] and 12 [7]. Most recently,

G. A. Garcia discussed in dimensions p3, and classified quasi-triangular Hopf

algebras of dimension 27 [5].

In this paper, we apply the method in [4] to Hopf algebras of dimension 18.

We show the following

Theorem 0.1: If H is a non-semisimple Hopf algebra of dimension 18 over an

algebraically closed field of characteristic zero, then either H or H∗ is pointed.

1. Preliminaries

Throughout this paper, H is a finite dimensional Hopf algebra over an alge-

braically closed field k of characteristic zero, and ∆, ε, S denote the comulti-

plication, the counit, the antipode, respectively.

The n-th term of the coradical filtration of H is Hn =
∧n+1

H0, where

H0 =
⊕

i Ci is the coradical of H . As k is algebraically closed, there exists

a coalgebra projection π : H → H0 and H = H0 ⊕ I, where ker π = I(see

[6, 5.4.2]). Setting ρl = (π ⊗ id)∆ and ρr = (id⊗π)∆, H is a H0-bicomodule

with the structure maps ρl and ρr. H0, Hn, I are H0-subbicomodules of H .

Any H0-bicomodule is a direct sum of simple H0-subbicomodules and a sim-

ple H0-bicomodule has coefficient coalgebras (Ci , Cj) and its dimension is
√

(dim Ci)(dim Cj).

Let Pn , n = 1, 2, . . . be defined inductively by:

P1 = {x ∈ H ; ∆(x) − ρl(x) − ρr(x) = 0},

Pn =

{

x ∈ H ; ∆(x) − ρl(x) − ρr(x) ∈
∑

1≤i≤n−1

Pi ⊗ Pn−i

}

, n ≥ 2.

Then Pn = Hn ∩ I and Pn are H0-subbicomodules of I, due to Nichols (see [1,

Lemma 1.1]). We denote by P
Ci, Cj

n the isotypic component of simple subbi-

comodule of Pn with coalgebra of coefficients (Ci , Cj). We say the subspace

P
Ci, Cj

n is non-degenerate if P
Ci, Cj

n 6⊂ Pn−1.

The following result is from [2].

Proposition 1.1: If there is no non-trivial skew primitives then there exists a

simple subcoalgebra C (dimC ≥ 4) of H such that P
1, C
1 6= 0.
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The next Lemmas were obtained in [4]. Lemma 1.2 is a generalization of [1,

Corollary 1.3].

Lemma 1.2: dimPC, D
n = dimP gC, gD

n = dimPCg, Dg
n = dimP

S(D), S(C)
n for

g ∈ G(H).

Lemma 1.3: Suppose there exist simple subcoalgebras C and D such that PC, D
m

is non-degenerate. Assume further dimC 6= dimD or dimPC, D
m − dimP

C, D
m−1 6=

dim C. Then there exists a simple subcoalgebra E such that P
C, E
l is non-

degenerate for some l ≥ m + 1.

2. Proof of Theorem 0.1.

Throughout this section, H be a non-semisimple and non-pointed Hopf algebra

of dimension 18 over k. First we show the following

Lemma 2.1: Let H be a Hopf algebra as above and |G(H)| > 1. Then H

contains a Taft Hopf algebra T (3) of dimension 9 and |G(H)| = 3.

Proof. First we suppose that H has no non-trivial skew primitive element.

Hence, by Proposition 1.1, there exists a simple subcoalgebra C with dimC ≥ 4

such that P
1, C
1 6= 0. Thus P

S(C), 1
1 6= 0 by Lemma 1.2. It follows from Lemma

1.3 that there exist a grouplike element h and simple subcoalgebra E with

dim E = dim C such that P 1, h
n and P

S(C), E
m are non-degenerate for some

integers m, n ≥ 2. By Lemma 1.2, dimP
g, gC
1 = dimP

gS(C), g
1 = dimP

1, C
1

for all g ∈ G(H). Note that {P g, gC
1 : g ∈ G(H)} ∪ {P gS(C), g

1 : g ∈ G(H)} is a

set of linearly independent subspaces of H . Therefore,

18 = dimH ≥ dim

(

H0 + PS(C), E
m +

∑

g∈G(H)

P
g, gC
1 + P

gS(C), g

1 + P g, gh
n

)

≥ 2(|G(H)| + dimC) + 2|G(H)| dim P
1, C
1

≥ 2(|G(H)| + dimC + |G(H)|
√

dimC).

This implies that (|G(H)|, dim C) = (1, 4) which contradicts the assumption

|G(H)| > 1. Therefore, H has a non-trivial (1, g)-primitive element x for some

g ∈ G(H). Let L be the Hopf algebra generated by x, g. Then L is non-

semisimple and pointed and so L is not isomorphic to H . By [1, Proposition 1.8],

dim L has a square factor. Therefore, dimL = 9 and so L ∼= T (3) by [11] or [9].
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By the result above, |G(H)| = 3k for some integer k. Since H is non-pointed,

a simple subcoalgebra C with dim C ≥ 4 is contained in H0. By counting

dimensions, dimC = 4 or 9. If dimC = 4 then 3k| dimH0,2 where H0,2 is the

sum of all 4-dimensional simple subcoalgebras of H [1, Lemma 2.1(i)]. And so

dim H0 ≥ |G(H)|+dim H0,2 ≥ 15. This contradicts T (3) ⊂ H . Thus dimC = 9

hence H ∼= T (3) ⊕ C.

Remainder of the proof of Theorem 0.1. We assume further H∗ is non-pointed.

By [10, Corollary 2.2], G(H) or G(H∗) is not trivial. By duality, we may

assume that |G(H∗)| > 1. By Lemma 2.1, T (3) ⊂ H∗ and so there exists a

Hopf algebra projection Π : H → T (3)∗ ' T (3). Let HcoΠ be the coinvariant

{x ∈ H : (id⊗Π)∆(x) = x ⊗ Π(1)}. Then HcoΠ is a left coideal subalgebra of

H , dimHcoΠ = 2.

If dim Soc(HcoΠ) = 2 then HcoΠ is a subHopf algebra of H and HcoΠ ' kC2.

This contradicts Lemma 2.1 which implies that |G(H)| = 3. Thus Soc(HcoΠ) =

k1. The HcoΠ is expressed as k1 ⊕ kx where x ∈ (HcoΠ)+. Since HcoΠ is a

left coideal, ∆(x) can be expressed as α ⊗ 1 + β ⊗ x. In this case, the α above

is equal to x and the β above is a non-trivial grouplike element by calculating

∆(2)(x) with the coassociativity of ∆. So x is a skew primitive element. By

Lemma 2.1, the order of β is 3.

If x is a non-trivial skew primitive element, then Hopf algebra L generated by

{x, β} is non-semisimple and pointed. Thus dimL has a square factor and is a

proper factor of 18. This implies that dimL = 9 and hence L ∼= T (3). Therefore,

1, x, x2 are linearly independent which contradicts that dimHcoΠ = 2.

If x is a trivial skew primitive element, i.e. x = k(1−β) for some k ∈ k
×, then

the algebra generated by {1, x} is the group algebra k[β] which is of dimension

3. This also contradicts that dimHcoΠ = 2.

This completes the proof of Theorem 0.1.
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