

CLASSIFICATION OF HOPF ALGEBRAS OF DIMENSION 18

BY

DAIJIRO FUKUDA

*Department of Mathematics and Informatics, Faculty of Science, Chiba University
1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
e-mail: d-fukuda@world.odn.ne.jp*

ABSTRACT

This paper contributes to the classification problems of finite dimensional Hopf algebras H over an algebraically closed field \mathbf{k} of characteristic zero. It is shown that for a non-semisimple Hopf algebra H of dimension 18 either H or H^* is pointed.

0. Introduction.

The classification of finite dimensional Hopf algebras has been developed rapidly since the end of 90's. D. Ştefan classified Hopf algebras in dimensions less than 12 [11]. It is shown by S.-H. Ng that a Hopf algebra of dimension p^2 is isomorphic to a group algebra, the dual of a group algebra or a Taft algebra [8]. For the pq dimensional Hopf algebras H where p, q are distinct primes, classification is still open in general. However many results have been obtained. N. Andruskiewitsch and S. Natale proved that 15, 21 or 35-dimensional H are semisimple [1]. Furthermore M. Beattie and S. Dăscălescu settled the dimensions 14, 55, 65, 77, 91 and 143 in [2]. Other recent results of pq -dimensional cases are as follows. If primes p, q are twine primes $p, p + 2$ [9] or $p = 2$ [10] then H is semisimple by Ng. P. Etingof and S. Gelaki proved [3] that if $q \leq 2p + 1$, then H is semisimple. For the case $q \geq 2p + 1$, using some generalization of the method in [1] and [2], it is shown in [4] that there is no non-semisimple Hopf algebras of dimension 33, 39, 57, 85, 95, 115, 119, 133, 145, 161, 203, 319 or 377.

Received October 31, 2006 and in revised form April 7, 2007

On the other hand, other than the cases of prime and pq dimensions, the classification is settled only in dimensions 8 [11] and 12 [7]. Most recently, G. A. Garcia discussed in dimensions p^3 , and classified quasi-triangular Hopf algebras of dimension 27 [5].

In this paper, we apply the method in [4] to Hopf algebras of dimension 18. We show the following

THEOREM 0.1: *If H is a non-semisimple Hopf algebra of dimension 18 over an algebraically closed field of characteristic zero, then either H or H^* is pointed.*

1. Preliminaries

Throughout this paper, H is a finite dimensional Hopf algebra over an algebraically closed field \mathbf{k} of characteristic zero, and Δ , ϵ , S denote the comultiplication, the counit, the antipode, respectively.

The n -th term of the coradical filtration of H is $H_n = \bigwedge^{n+1} H_0$, where $H_0 = \bigoplus_i C_i$ is the coradical of H . As \mathbf{k} is algebraically closed, there exists a coalgebra projection $\pi : H \rightarrow H_0$ and $H = H_0 \oplus I$, where $\ker \pi = I$ (see [6, 5.4.2]). Setting $\rho_l = (\pi \otimes \text{id})\Delta$ and $\rho_r = (\text{id} \otimes \pi)\Delta$, H is a H_0 -bicomodule with the structure maps ρ_l and ρ_r . H_0 , H_n , I are H_0 -subbicomodules of H . Any H_0 -bicomodule is a direct sum of simple H_0 -subbicomodules and a simple H_0 -bicomodule has coefficient coalgebras (C_i, C_j) and its dimension is $\sqrt{(\dim C_i)(\dim C_j)}$.

Let P_n , $n = 1, 2, \dots$ be defined inductively by:

$$P_1 = \{x \in H; \Delta(x) - \rho_l(x) - \rho_r(x) = 0\},$$

$$P_n = \left\{ x \in H; \Delta(x) - \rho_l(x) - \rho_r(x) \in \sum_{1 \leq i \leq n-1} P_i \otimes P_{n-i} \right\}, \quad n \geq 2.$$

Then $P_n = H_n \cap I$ and P_n are H_0 -subbicomodules of I , due to Nichols (see [1, Lemma 1.1]). We denote by $P_n^{C_i, C_j}$ the isotypic component of simple subbicomodule of P_n with coalgebra of coefficients (C_i, C_j) . We say the subspace $P_n^{C_i, C_j}$ is non-degenerate if $P_n^{C_i, C_j} \not\subset P_{n-1}$.

The following result is from [2].

PROPOSITION 1.1: *If there is no non-trivial skew primitives then there exists a simple subcoalgebra C ($\dim C \geq 4$) of H such that $P_1^{1, C} \neq 0$.*

The next Lemmas were obtained in [4]. Lemma 1.2 is a generalization of [1, Corollary 1.3].

LEMMA 1.2: $\dim P_n^{C, D} = \dim P_n^{gC, gD} = \dim P_n^{Cg, Dg} = \dim P_n^{S(D), S(C)}$ for $g \in G(H)$.

LEMMA 1.3: Suppose there exist simple subcoalgebras C and D such that $P_m^{C, D}$ is non-degenerate. Assume further $\dim C \neq \dim D$ or $\dim P_m^{C, D} - \dim P_{m-1}^{C, D} \neq \dim C$. Then there exists a simple subcoalgebra E such that $P_l^{C, E}$ is non-degenerate for some $l \geq m + 1$.

2. Proof of Theorem 0.1.

Throughout this section, H be a non-semisimple and non-pointed Hopf algebra of dimension 18 over \mathbf{k} . First we show the following

LEMMA 2.1: Let H be a Hopf algebra as above and $|G(H)| > 1$. Then H contains a Taft Hopf algebra $T(3)$ of dimension 9 and $|G(H)| = 3$.

Proof. First we suppose that H has no non-trivial skew primitive element. Hence, by Proposition 1.1, there exists a simple subcoalgebra C with $\dim C \geq 4$ such that $P_1^{1, C} \neq 0$. Thus $P_1^{S(C), 1} \neq 0$ by Lemma 1.2. It follows from Lemma 1.3 that there exist a grouplike element h and simple subcoalgebra E with $\dim E = \dim C$ such that $P_n^{1, h}$ and $P_m^{S(C), E}$ are non-degenerate for some integers $m, n \geq 2$. By Lemma 1.2, $\dim P_1^{g, gC} = \dim P_1^{gS(C), g} = \dim P_1^{1, C}$ for all $g \in G(H)$. Note that $\{P_1^{g, gC} : g \in G(H)\} \cup \{P_1^{gS(C), g} : g \in G(H)\}$ is a set of linearly independent subspaces of H . Therefore,

$$\begin{aligned} 18 = \dim H &\geq \dim \left(H_0 + P_m^{S(C), E} + \sum_{g \in G(H)} P_1^{g, gC} + P_1^{gS(C), g} + P_n^{g, gh} \right) \\ &\geq 2(|G(H)| + \dim C) + 2|G(H)| \dim P_1^{1, C} \\ &\geq 2(|G(H)| + \dim C + |G(H)|\sqrt{\dim C}). \end{aligned}$$

This implies that $(|G(H)|, \dim C) = (1, 4)$ which contradicts the assumption $|G(H)| > 1$. Therefore, H has a non-trivial $(1, g)$ -primitive element x for some $g \in G(H)$. Let L be the Hopf algebra generated by x, g . Then L is non-semisimple and pointed and so L is not isomorphic to H . By [1, Proposition 1.8], $\dim L$ has a square factor. Therefore, $\dim L = 9$ and so $L \cong T(3)$ by [11] or [9].

By the result above, $|G(H)| = 3k$ for some integer k . Since H is non-pointed, a simple subcoalgebra C with $\dim C \geq 4$ is contained in H_0 . By counting dimensions, $\dim C = 4$ or 9. If $\dim C = 4$ then $3k \mid \dim H_{0,2}$ where $H_{0,2}$ is the sum of all 4-dimensional simple subcoalgebras of H [1, Lemma 2.1(i)]. And so $\dim H_0 \geq |G(H)| + \dim H_{0,2} \geq 15$. This contradicts $T(3) \subset H$. Thus $\dim C = 9$ hence $H \cong T(3) \oplus C$. ■

Remainder of the proof of Theorem 0.1. We assume further H^* is non-pointed. By [10, Corollary 2.2], $G(H)$ or $G(H^*)$ is not trivial. By duality, we may assume that $|G(H^*)| > 1$. By Lemma 2.1, $T(3) \subset H^*$ and so there exists a Hopf algebra projection $\Pi : H \rightarrow T(3)^* \simeq T(3)$. Let $H^{co\Pi}$ be the coinvariant $\{x \in H : (\text{id} \otimes \Pi)\Delta(x) = x \otimes \Pi(1)\}$. Then $H^{co\Pi}$ is a left coideal subalgebra of H , $\dim H^{co\Pi} = 2$.

If $\dim \text{Soc}(H^{co\Pi}) = 2$ then $H^{co\Pi}$ is a subHopf algebra of H and $H^{co\Pi} \simeq \mathbf{k}\mathbf{C}_2$. This contradicts Lemma 2.1 which implies that $|G(H)| = 3$. Thus $\text{Soc}(H^{co\Pi}) = \mathbf{k}1$. The $H^{co\Pi}$ is expressed as $\mathbf{k}1 \oplus \mathbf{k}x$ where $x \in (H^{co\Pi})^+$. Since $H^{co\Pi}$ is a left coideal, $\Delta(x)$ can be expressed as $\alpha \otimes 1 + \beta \otimes x$. In this case, the α above is equal to x and the β above is a non-trivial grouplike element by calculating $\Delta^{(2)}(x)$ with the coassociativity of Δ . So x is a skew primitive element. By Lemma 2.1, the order of β is 3.

If x is a non-trivial skew primitive element, then Hopf algebra L generated by $\{x, \beta\}$ is non-semisimple and pointed. Thus $\dim L$ has a square factor and is a proper factor of 18. This implies that $\dim L = 9$ and hence $L \cong T(3)$. Therefore, $1, x, x^2$ are linearly independent which contradicts that $\dim H^{co\Pi} = 2$.

If x is a trivial skew primitive element, i.e. $x = k(1 - \beta)$ for some $k \in \mathbf{k}^\times$, then the algebra generated by $\{1, x\}$ is the group algebra $\mathbf{k}[\beta]$ which is of dimension 3. This also contradicts that $\dim H^{co\Pi} = 2$.

This completes the proof of Theorem 0.1. ■

References

- [1] N. Andruskiewitsch and S. Natale, *Counting arguments for Hopf algebras of low dimension*, Tsukuba Journal of Mathematics **25** (2001), 187–201.
- [2] M. Beattie and S. Dăscălescu, *Hopf algebras of dimension 14*, Journal of the London Mathematical Society. Second Series **69** (2004), 65–78.
- [3] P. Etingof and S. Gelaki, *On Hopf algebras of dimension pq* , Journal of Algebra **277** (2004), 668–674.

- [4] D. Fukuda, *Structure of coradical filtration and its application to Hopf algebras of dimension pq* , Glasgow Mathematical Journal **50** (2008), 183–190.
- [5] G. A. Garcia, *On Hopf algebras of dimension p^3* , Tsukuba Journal of Mathematics **29** (2005), 259–284.
- [6] S. Montgomery, *Hopf Algebras and their Actions on Rings*, CBMS, Vol. 82, AMS, 1993.
- [7] S. Natale, *Hopf algebras of dimension 12*, Algebras and Representation Theory **5** (2002), 445–455.
- [8] S.-H. Ng, *Non-semisimple Hopf algebras of dimension p^2* , Journal of Algebra **255** (2002), 182–197.
- [9] S.-H. Ng, *Hopf algebras of dimension pq* , Journal of Algebra **276** (2004), 399–406.
- [10] S.-H. Ng, *Hopf algebras of dimension $2p$* , Proceedings of the American Mathematical Society **133** (2005), 2237–2242.
- [11] D. Ștefan, *Hopf algebras of low dimension*, Journal of Algebra **211** (1998), 343–361.